
International Journal of Theoretical Physics, VoL 26, No. 6, 1987 

Keeping the Entropy of Measurement: 
Szilard Revisited 

E l i h u  L u b k i n  I 

Received January 13, 1987 

What happens to von Neumann's entropy of measurement after we get the 
outcome? It becomes entropy of erasure. This is cribbed from Szilard (1929). 
Also, two errors in that celebrated paper are corrected. 

1. INTRODUCTION 

The Second Law of Thermodynamics forbids a net gain of information. 
Yet a measurement "provides information." Measurement itself thus 
becomes paradoxical, until one reflects that the gain in information about 
the system of interest might be offset by a gain in entropy of some "garbage 
can" gc. Indeed, it must  be so offset to save the bookkeeping of the Second 
Law. This apparent and paradoxical gain in information attendant upon 
observation, presumably due to neglect of some dissipant gc, has long 
prompted aberrant speculation that intelligent beings and even life in general 
somehow indeed violate the Second Law, an erroneous view I cite only for 
perspective. For some time I have fallen prey to a version of this paradox, 
developed in the context of  standard quantum theory of  measurement as 
delineated by von Neumann (1955), a trap I have recently been able to 
escape with the help of Szilard (1929), the celebrated paper in which the 
related paradox of Maxwell's demon is broken. Here I describe a precise 
formulation, then resolution of my paradox of information through 
measurement. 

2. REVIEW OF VON NEUMANN 

Von Neumann finds no paradoxical loss of entropy through measure- 
ment, but rather a gain of entropy quite in conformity with the Second 
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Law. I go over this well-known ground to explore the paradox of the missing 
paradox! 

Indeed, if we start with a pure state vector ] x )=~  ailei) resolved on 
the orthonormal basis of  states ]ei) separated by distinct outcomes of the 
measurement, then the pl = [ai r are the probabilities of the various outcomes, 
or, in an early way of saying it, the probabilities of the different possible 
"quantum jumps." Interaction with the measuring device makes the system 
"jump" with probabilities pg, which introduce nonnegative entropy 

Y~piln .=- l n p  ~ v N  (1) 

(in Boltzmen or e-folds). Perhaps I should attribute this notion of production 
of entropy to Dirac (1938-39), who noted that the quantum jumps not only 
introduce entropy, but might account for all production of entropy, a thesis 
with ancient roots (Lucretius - 5 5  B.c.; see Latham, 1951, p. 66) that I also 
long ago found support for in a calculation (Lubkin, 1978). 

Von Neumann makes this already familiar production of entropy v N  
unambiguous by dealing with very concrete ensembles. Thus, the pure state 
[x) before the measurement is presented as some large number N of copies 
of an ]x)-prepared system. After measurement, piN estimates the number 
of copies cast into state le~), hence the originally pure ensemble [x)(xl = P 
gets replaced by the mixture ~ ]e~)p~(ei[ =Y. The entropy per copy of P is 
0, the entropy per copy of Y is quite unambiguously the vN  attributable 
to measurement, or to "quantum jumps." 

The clarity of this mixing of the multicopy ensemble unfortunately 
reaches its resulting increase v N  of entropy by so well bypassing the 
phenomenon of gain of information through measurement that we simply 
do not learn enough about our paradox from it. Of course, more generally, 
the original ensemble P need not be pure, and the mutually orthogonal 
outcome spaces E~ [of a sharp test (Lubkin, 1979b), definition on p. 550; 
also Lubkin (1974)] need not be one-dimensional, yet the final ensemble 
Y = ~ E~PE~ if distinct from P is of greater entropy than P, which happens 
if any E~ fails to commute with P, this greater generality being, however, 
equally useless to us in regard to our paradox. 

3. T H E  P A R A D O X  

So, to formulate the paradox, as it were to look for trouble, I focus 
attention as before upon the individual trial, rather than on the statistical 
behavior of the very many trials dealt with by von Neumann. We still have 
the probabilities Pi = lail 2 (in the case of initial pure state x) as predictions 
of the likelihoods of our single outcome for our individual trial. Indeed, 
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after the trial is over, but before we look at the outcome,  the original state 
matrix P is replaced by the new state matrix Y. Yet when we do learn the 
outcome, Y is in turn replaced by EiYEi (unnormalized), with i the index 
of the single observed outcome, or more simply (and normalized) by Ei 
itself if E~ is one-dimensional (dimension of its image space). The threefold 
sequence 

P-> Y ~ E i (2) 

(to keep to the simple one-dimensional case, which illustrates the point 
nicely), with recognition of a state Y after the essential interaction of 
measurement  but before transition of the answer " i "  to the observer, 
emphasizes the increase in entropy in the first step P ~ Y, so that we may 
be properly shocked at the loss of  this entropy in the second step, Y ~ E~. 
Also, the P->Y  increase in entropy is of  course precisely the (ln ( l / p ) )  
entropy of measurement v N  of von Neumann,  which we bet is the "right 
answer." We are now in the uncomfortable position of betting on a "right 
answer" for an entropy of measurement  provided that we do not look at 
the outcome, yet getting zero if we do look, as if a proper  measurement 
does not involve looking at the result, which is surely an unhappy state of  
affairs ! 

4. DEBATE ON THE SINGLE TRIAL 

Some may fault the notion of probability without an ensemble as the 
root of my trouble; to relate the probabilities Pi to experience, we must run 
many trials, not one, and so the probabilities, to be physically meaningful, 
must refer only to the very many trials. Yet let us run our N trials one by 
one. I f  each time we generate no entropy, then we will not have generated 
any entropy in the string of  N trials, either. And the per-trial "ent ropy"  
v N  of the "N-ensemble"  of  N trials in my above version of yon Neumann 
appears only in describing the nonuniformity of the ensemble. Our knowl- 
edge of each outcome after it happens is replaced by the randomness of  
entropy in the amount v N  only if the state we produce for a next experiment 
is randomly chosen from that ensemble. To repeat, the generation of entropy 
by measurement,  if nil in the particular trial, is nil in the N trials together, 
and entropy of the ensemble for a subsequent test is produced only by the 
possible policy of disregarding the separation into cases provided by the 
particular outcomes, and using the whole ensemble in a future experiment 
with no regard for the known sorting into cases of  the earlier individual 
outcomes. 

Is there, then, no true entropy of measurement,  but just entropy from 
a refusal to accept the sorting provided? No, there must be more to it than 
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that, because of the P ~ Y ~ Ei paradox; Y, the situation before we look, 
but after the measurement has taken place, already possesses entropy of 
measurement vN, which cannot be lost in the Y ~ Ei phase; therefore, there 
must be a garbage can gc. 

5. B O H R E A N  D O U B T S  

Or is the situation too vague? Increase of entropy is, after all, not 
universal. Define your system of interest to shrink to nothing, then its 
entropy of course goes to zero. If, as another but less trivial case, the system 
is so well isolated as to obey a law of unitary motion, its entropy remains 
constant, and frustratingly for Boltzmann, will not increase. The Second 
Law is for situations in which the system is imperfectly isolated, so that it 
tends to develop new correlations with the outside, yet where somehow the 
gross content of the system remains fixed, on the average, so that shrinking 
to nothing, for example, is forbidden. Then the density matrix of the system 
of interest, in having the increasing external correlations lopped off through 
Landau tracing over externalities (Lubkin 1978), becomes increasingly 
mixed. Another reason that having "the system" perfectly isolated is suspi- 
cious is that specification of a precise value of some observable forces a 
detailed correlation of the system with the outside in regard to complemen- 
tary observables (e.g., Lubkin, 1979b, p. 537). Perhaps these various 
philosophical demands attending definition of the type of "system" that 
should indeed obey the Second Law engender an incompatibility with the 
"systems" in a paradigm of measurement; perhaps "systems" for clear 
Second-Law bookkeeping and "systems" in measurement are complemen- 
tary. But I feel that these Bohrean misgivings anent the clarity of my paradox 
are mooted by finding gc with the help of Szilard's example. More strongly, 
it must be that the Second Law and measurement go together, because they 
both refer to the empiricism of everyday life, the particularization of definite 
outcomes in everyday measurement serving as the injector of randomness 
that drives the Second Law, as noted already by Lucretius and Dirac. 

6. AMPLITUDES IN SUPPORT OF THE SINGLE TRIAL 

Having drawn attention to the philosophical objection to probabilities 
for a single trial, I should make it clear why I nevertheless regard the P ~ Y 
phase to be meaningful for a single trial, again for the clear pure case 
P = Ix)(xl. We may regard state x times the equipment's original state Yo to 
evolve, • ai]ei) | [yo)~ Y~ a~[e~) | [y~), to a new pure state, with density matrix 

? = E a,a*le,>| ly,)<e~le<yjl 
U 
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with Y---E, la,12le,)(e,[ obtained from Y by the Landau tracing-out of the 
equipment. That is, the various amplitudes for different "outcomes" are in 
principle capable of  subsequent interference, and our option to disregard 
this by confining attention to the x-system subsequently is what reduces 
the amplitudes to probabilities and engenders entropy. So the branching 
into distinct channels is there, physically, in the Schr6dinger equation, 
which gives us ~l, even before the neglect or approximation that limits our 
attention to Y. And this Y already formally has entropy v N  = Tr Y In(I/Y),  
even though operator Y acts on the Hilbert space appropriate to one trial, 
not on a tensor product of N copies of that Hilbert space. The fact that 
entropy v N  times N is most easily displayed by the scatter in an N-copy 
ensemble associated to Y should not be used to obscure the fact that the 
entropy v N  times 1 is already there without any such display. Of course, 
to emphasize the already physical qualities of this amplitudinous branching 
has become known as the "many-worlds" point of view; the reader will 
follow better if I say that for me, this is the right view. 

7. PLURAL REALITIES 

Indeed for clarity I restate the paradox in grossly multiworldly 
language. 

First Multiworldly Statement: v N  = E P, In(1/Pi) explicitly contemplates 
the multiplicity of branches issuing from a node of  measurement, hence is 
obviously appropriate for a contemplator of  that multiplicity, say, for an 
early observer who has not yet read the outcome, or for an outer observer 
or friend outside the laboratory. But in the reality relative to an inner or 
late observer who has read the outcome, the other branches are excluded, 
and the entropy expression v N  in seeming to yet take those other branches 
seriously seems no longer appropriate. 

Preliminary Resolution. Now, the amount of  entropy v N  or more must 
nevertheless yet be there, even in the bookkeeping of an inner observer, 
because the reality of  experienece is the steady progress " inward" of an 
observer, through a series of  particularized outcomes, and it is to this 
common experience or stream of consciousness that the Second Law and 
indeed the notion of time applies, else the Second Law could not have been 
found out in the 19th century. So while v N  for the outer or early observer 
is simply a feature of multitudinous branching, there must also be a v N  
inner to each branch harbored in a g c  in each branch. 

Second Multiworldly Statement. Branching realities might be feared 
inconsistent with laws framed in a philosophy of one unique reality, hence 
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inconsistent with all the traditional "First" laws of conservation, and incon- 
sistent, too, with the Second Law. Since "each branch has all the baryons" 
(Lubkin, 1979a, p. 174), laws of conservation are f ine--of  course such laws 
are also tied to symmetry, and enough symmetries will remain. The present 
investigation may be taken to deal with the scare that the Second Law might 
fail. 

Resolution Again. But it must not fail. When the probabilities are swept 
away by a specific outcome, their entropy must yet be swept into a gc, not 
actually annulled. This is the usual caution, in an entropic embarrassment, 
that one may not have been sufficiently careful in defining the problem's 
thermodynamically relevant "universe." 

8. THE ANSWER, gc 

Where, then, is the garbage can? Szilard (1929) finds it for me: gc is 
the damper on the register that receives the outcome, the damper that allows 
that register to get rid of its former configuration. I call this dissipation 
entropy of erasure (er), and argue that er_> vN. 

Lemma. Let the k-labeled orthogonal states of the register reg occur 
with Boltzmann's probabilities 

qk oc exp ( -  ek/To) (3) 

in the mixed state ofreg at temperature To that is to correspond to "erasure";  
note that by choosing the energies ek of the levels, one can adjust the qk 
at will. Outcome k of a measurement is assumed to set reg instead to pure 
energy level k. Then, if the probability of this outcome is Pk, the entropy 
of erasure is given by the "cross entropy" expression 

er = -Y. pkln qk (4) 

Proof. Suppose that, due to the outcome having been k, the reg starts 
at pure state Ek before erasure to To ; to calculate the entropy of that erasure 
"erk" from such a start: erk is a sum of two terms. 

erk = ASreg + ASres (5) 

The part ASreg is Sreg at To minus Sreg at Ek. As the latter is pure, its entropy 
Sr~g is 0, whereas Sr~g at To = -}~ q/In qj. So also ASr~g = - ~  qj In qj. The 
other term ASr~s is the heat gained by the To reservoir used for the quenching, 
divided by To. If the thermodynamic internal energy of reg after quenching 
is U0, then the heat gained by reg is Uo-ek,  whence the heat gained by 
res is - (  Uo-  ek); SO 

erk = --F, qj In qj -- ( Uo- ek)/To (6) 
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is the result for the entropy erk of erasure from the definite outcome k. Of  
course, 

Uo = E qjej (7) 

Finally, the expected value er for the entropy of erasure if reg starts 
from an unknown setting k but with probability Pk is 

er-= Y. Pk" erk (8) 

This convex combination alters (6) only in replacing ek by Y pkek, giving 

e r =  - E  qj In qj+Y, ( p j -  qj)ej/To (9) 

Let 

z -= • exp( -eg /To)  (10) 

Then ek/To = --ln qk--ln z eliminates the e's,  to give 

e r =  - Y  q~ In q j+Z  ( P j -  q j ) ( - ln  q~ - l n  z) (1i) 

which indeed simplifies to - Y  pj In qj, hence to (4). �9 

Theorem: 

e r ~  vN (12) 

Proof It is to be shown that - ~  Pk in q k - > - ~  Pk ln pk, that is, that 
- ~  Pk In qk considered as a function of the arbitrarily assignable quenching 
probabilities qk for fixed values of  the experiment 's  own probabilities Pk is 
minimum at qk = Pk. This is immediately verified, using a Lagrangian multi- 
plier 3. for the constraint ~ q k = l .  Thus, d(-Y~pklnqk)=3.dY~qk, 
- ~  Pk dqk/qk = 3. ~ dqk, -Pk/qk = 3., hence qk ~ hence qk = Pk since both 
p ' s  and q's must sum to 1. It is also easy to check that this stationary poif~t 
is indeed a minimum, e.g., - ~  Pk In qk ~ +oo at the qk = 0 boundaries. �9 

Varying instead on the p ' s  for fixed q's produces no interesting result. 

Significance of the Theorem. The reservoir that quenches reg, thereby 
erasing its old contents, indeed is an adquate gc for upholding the Second 
Law, in that quenching the outcome of a former trial of  the same experiment 
in that gc produces enough entropy to compensate for the loss of  entropy 
vN upon learning the outcome of a new trial. Quenching indeed produces 
more than enough entropy, unless the quenched or erased mixed state of  
reg is selected to have the same probabilities as the experiment 's  own. in 
this way each trial of  a long sequence needed to establish empirical prob- 
abilities will indeed contribute in the mean at least its proper share vN to 
increase the entropy of the universe, and will do that by dissipation in the 
gc cribbed from Szilard. 
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9. CONTEMPLATION OF SZILARD (1929), 
WITH MINOR CORRECTIONS 

Erasure in Szilard. I first explain wherein lies my debt to Szilard (1929). 
Szilard is exorcising the Maxwell 's demon. This demon is an entity "who"  
by observing molecules can operate an engine in a way that reduces the 
entropy of the universe, or equivalently, extracts work from a single heat 
reservoir, in violation of Kelvin's principle. Szilard argues convincingly that 
the essence of the demon is the storage of information about one dynamical 
variable x in another one y, and concentrates on cases where the set of  
possible values for y has two elements: in modern jargon, y is embodied 
in a one-bit register. Szilard gives examples to show that if such writing of 
x on y could be done without producing entropy, then the demon would 
work, and the Second Law would fail, but that if each such writing somehow 
entails the production of one bit of entropy, the demon fails. (In 1929, 
"amount  kB in 2 of entropy, where k8 is Boltzmann's constant.") He con- 
cludes abstractly from the Second Law that such writing must produce the 
required bit of entropy to compensate the deficit, but he is not satisfied 
with that, and he accordingly builds a model of a one-bit register, to see 
precisely where entropy gets produced. He is so careful not to produce 
entropy unnecessarily that he frighteningly manages to write demonically 
on his register without producing entropy, if reg is in a known state before 
writing. This disaster is avoided when he does find the requisite production 
of entropy upon erasing back to a known state, for the next cycle. His 
known state is equilibrium at some temperature To; the erasure is effected 
by plunging reg into a reservoir at To. (Szilard does not use the word 
"erase,"  but that is the idea.) Since I also find my gc through entropy of 
erasure, I have now explained my debt to Szilard; I note that for a two-state 
register er = - P l  In ql -P2  In q2 -< In 2 and is In 2, one bit, only when pl = P2 = 
q~ = q2; and that the more general expression appears also in Szilard; I have 
simplified for readability. 

I will now attempt to discharge my debts to Szilard and to the patient 
reader by correcting some mistakes; the excitement of  discovery carried the 
brilliant author past some fine points. 

Degeneracy g. Szilard uses a two-level quantum system or atom for his 
register. To record one answer "0," the atom is to be cooled to its ground 
state, which is unobjectionable; cool (near to) absolute zero, 1/T-> +oo. To 
record the other answer "1," the atom should be heated to its nondegenerate 
excited state. The easy way to do that is to heat to l /T->-oo, or T-~0- ,  
the "other absolute zero" of  negative temperature,  but Szilard refuses to 
anticipate the discovery (Purcell and Pound, 1951) of negative temperature. 
He instead makes his excited state highly degenerate, giving it a multiplicity 
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g >> 1. Then a large, positive temperature, 1 / T ~ 0 ,  which is really only 
halfway to -co,  seems to work, as the odds of occupation of the upper  level 
are g times the odds for the lower. Unfortunately, the hot mixed state has 
large entropy ln(g + 1), and will produce entropy more than the one bit In 2 
on being plunged into the resetting reservoir at To. (Or if To is near co, 
resetting the cold state will produce excessive entropy.) As Szilard wishes 
to show that it is possible to just compensate the deficit of  entropy, such 
excessive production of entropy would contradict his point about that. To 
see how the g-foldness of  the upper  level actually leads to the trouble of  
excessive heat / temperature  upon cooling, note that although the energy 
("heat")  transferred is independent of  g, the To denominator  does involve 
g: In the easy case, qk =Pk = 1/2, and in particular is 1/2 for the ground 
state, we have e ~  1 =ge -~/To, where e is the step between levels, hence 
To = e / ln  g is indeed depressed by the largeness of  g, and entropy - e / T o  
is enhanced and excessive. 

I f  one does not like my glib repair with negative temperature, one may 
instead write upon a nondegenerate upper  level as follows: First cool to 
the lower level. Then apply a causal Hamiltonian motion to "rotate"  that 
to the upper  level. 

I of  course wish to extend optimal management  of  a two-level reg to 
an n-level reg. For writing, I must be able to set reg to one of these n levels, 
not only to the ground state (by cooling to 0 +) or to the top state (by heating 
to 0-). There are enough other absolute zeros available (Lubkin, 1984) 
through chemical potentials to indeed select any level, approximately,  by 
direct Gibbsian equilibrium. Here the alternative method of causal Hamil- 
tonian motions subsequent to cooling to the ground state is much plainer. 

Bits and Pieces. Szilard tries so hard to avoid unnecessary production 
of entropy that he unwittingly lets his crucial bit slip by even in erasure, 
and so seemingly creates a demon: I erase by plunging reg directly into a 
To-bath, which may seem a gratuitous crudeness, to be replaced by a more 
quasistatic s c h e m e . . ,  but which would, if possible, reinstate the demon! 
Szilard at first tries to avoid this seeming crudeness. His equipment is a 
cold TA-bath, a hot TB-bath, the erasing To-bath, body K that is the register, 
but also extra pieces A and B, and a large number  of  other reservoirs for 
implementing quasistatic non-entropy-producing processes. After having 
been written on, K is either at TA, signifying one of the two y values, or 
at TB, signifiying the other. I f  it were generally known which of these, TA 
or TB, was K ' s  temperature,  then K could indeed be reset to To quasistatisti- 
cally, hence without producing entropy. Szilard wishes to convince us that 
when it is, however, not known which of TA, TB is K ' s  temperature, then 
erasure does entail the production of entropy demanded by the Second 
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Law: indeed this is his essential and correct contribution. Unfortunately, he 
has used his pieces A and B "too well." One of A, B is in contact with K. 
Piece A is at TA, B is at TB, and K is at the temperature of the piece 
touching it, but we do not know which that is. Yet in order to bring K to 
To without producing entropy, we need only to move quasistatically both 
A and B to To separately! Then K will go to To automatically and gradually, 
by conduction of heat through whichever piece it touches. 

Having thus seemingly exploded Szilard's central point, I must 
somehow patch it up: It seems to me that the shifting of contact of K, 
sometimes with piece A but sometimes B, itself requires a lever with two 
settings, and it is exclusion of this lever's budget of entropy from the 
discussion that allows a bit to escape scrutiny. Indeed, Szilard's first contrap- 
tion instructs me about levers. It is a cylinder of volume VI + V2 containing 
one ideal-gas molecule, the volume being then split into V1, V2 by slipping 
in a piston sideways. Then if the molecule is in V~, its pressure will force 
the piston in one direction; if the molecule is in V2, however, the force will 
be oppositely directed. A lever is provided, to in either case cause the force 
to raise a weight, thus seemingly achieving a demonic engine-- i f  we forget 
to bookkeep entropy for the lever, which Szilard does not let us do in this 
case ,  

But adding detailed consideration of a lever, except to fend off Szilard's 
unwitting A - B - K  demon, is not instructive. The purpose of Szilard's body 
K is to see the dissipation happen: If that dissipation instead happens 
elsewhere, in some extra lever, then that will involve another body K' ,  and 
we will have made no progress at all! So I got rid of pieces A and B, and 
let K (or reg) itself touch the dissipant entity. Indeed Szilard's mathematics 
pays no attention to his pieces A and B. The strategy is to refuse to complicate 
with extra registers, and so to show the fallacy of simple demons. Then the 
Second Law itself, having survived Maxwell's assault, gains our confidence, 
and so causes us to lose interest in building other demons. 

10. CLASSICAL DEMONS AND ORTHOGONALITY IN 
HILBERT SPACE 

Is it possible to revive the paradoxical disappearance of entropy by 
changing the construction of reg to make er smaller? No; to have unam- 
biguous separation of cases, the different outcomes must write reg into 
mutually orthogonal states, which already fixes the model. It would be silly 
to go on for my original problem, the statement of which stems from a 
quantum mechanical context. But the problem of Maxwell's demon ante- 
dates quantum mechanics, which may make us wonder whether Szilard's 
solution is as essentially quantal as it seems to be, from his use of a register 



Entropy of Erasure 533 

with two energy levels. Indeed, if classical logic is allowed (Birkhoff and 
von Neumann,  1936; Jauch, 1968; Finkelstein et al., 1962), er can be made 
arbitrarily small, thus breaking Szilard's solution: Just let the several pure 
recording states of  reg all make arbitrarily small angles in Hilbert space 
with one common pure state vector Yo, and erase to Y0. E.g., have Szilard's 
two settings of  y be two linear polarizations of a photon, but separated by 
only a small angle. I f  we think about this classically, the electric vector will 
have slightly distinct directions, and that is classically enough to cause 
unambiguously distinct consequences. The demon does work classically. I 
leave conversion of my blend of Hilbert space with "classical logic" into 
a thoroughly engineered classically mechanical demon as an "exercise"! 

From the Second Law to Wigner's Principle. Contrapositively, we may 
choose to assume the Second Law, which demands that e r -  > vN, and so 
reach a denial of  the usefulness of a set of nonorthogonal states as a register. 
This, then, is a thermodynamic foundation for Wigner's familiar principle 
(Wigner, 1952) that if a measurement unambiguously separates states in 
always leading to distinct settings of  some dial, those states must not only 
be distinct, they must be orthogonal. Of  course, Wigner's argument from 
unitarity of  the overall process in time is undoubtedly c l e a r e r . . ,  unless 
you set out to build time from observation. 

11. NOT LANDAU TRACING? 

The entropy of any single mixed state Y may be imagined found from 
Landau tracing of an encompassing pure state: Diagonalize Y = ~ pi[xi)(xi[, 
and use 4  ̀= Y p~/2xi| for an encompassing pure state's vector, where the 
Yi are orthonormal and orthogonal to all the x's. Is the entropy of erasure 
er also of  this character? 

It has not been so computed: The computations of  separate erk were 
done first, then convexly combined to er = ~  pk" erk. The nonlinearity of 
x - ~ - x  In x in Boltzmann's definition of entropy guarantees that if the 
convex combination were done first, the result would be wrong. In particular, 
for the opt imum case qk =Pk, one would "get"  no production of entropy 
upon quenching to To were the wrong order used. The computation of er 
did not investigate one single density matrix Y; indeed, naively replacing 
the separate Ek by the single density matrix Y = ~ pkEk just gave a wrong 
answer. 

Yet there is in a sense an "encompassing" pure state 4`: the wave 
function of the system and reg, in interaction together. Nevertheless, the 
analysis of  details within 4' was not done by selecting some factor Hilbert 
space to be Landau-traced out. The physical analogue of such Landau- 
ignoring of a factor space is subdividing a system into a system of interest 
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and a complementary part to be ignored. This Landau philosophy may, 
however, not be general, in that reality is not subdivided. In the calculation 
of er, we instead used a different simple reality for each outcome k, namely 
reg set at Ek, we To-quenched that, and then convexly combined the 
produced entropies erk on the excuse of calculating a mean entropy over 
a long run: a time average rather than an ensemble average. This is also 
what Szilard does. Hence, since 1929 we have had a calculation of entropy 
production outside the scope of Landau tracing, and based upon relative 
reality, albeit disguised as an old-fashioned averaging over time. 

It should be noted that Landau tracing does implicitly play its part 
here: If, in contemplating any single Ek ~ To quench, we imagine following 
the detailed unitary motion of reg in interaction with a To-reservoir, then 
no entropy will be produced until we Landau-neglect that reservoir; and 
that will get you erk. What I suspect may not be attainable by Landau 
tracing is a unified derivation of er, as distinct from erk. 

A related t rouble- - for  reviving my paradox,  not Maxwell ' s - - is  the 
thought that you need never erase if you have enough "clean paper"  to 
write on. My answer to this is that the entropic debt is then paid in advance, 
when you manufacture all that clean paper. It is roughly if not precisely 
analogous to "getting work from heat without a cold reservoir" by letting 
cylinders of  ideal gas expand without restoring their original condition. 
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